Theory & Computation

Atomic-Scale Device Simulations



 

First-principles materials & devices simulations: DFT, multi-space DFT, time-dependent DFT, NEGF, etc. 
- Multi-scale & machine learning extensions: quantum embedding, effecive mass approximation, neural network for electronic structure, etc.

Multi-Space Density Functional Theory (MS-DFT)

After a decade-plus effort, we established the multi-space excitation viewpoint for quantum transport, and based on the picture developed the multi-space constrained-search density functional theory (MS-DFT) for non-equilibrium open quantum systems. The multi-space excitation picture and the corresponding MS-DFT represent the alternatives to the standard Landauer viewpoint and the DFT-based non-equilibrium Green's function (NEGF) method, respectively


Selected Publications

 ​​​​​​"Multi-space excitation as an alternative to the Landauer picture for nonequilibrium quantum transport"

Juho Lee, Han Seul Kim, and Yong-Hoon Kim

Advanced Science, Vol. 7, No. 16, Art. 2001038 (2020).

Media Coverage: ​KAIST Research Highlights of 2020 and KAIST ​News (in Korean) 

 

 ​​​​​​"Quasi-Fermi level splitting in nanoscale junctions from ab initio"

Juho Lee, Hyeonwoo Yeo, and Yong-Hoon Kim

Proceedings of National Academy of Science U.S.A., Vol. 117, No. 19, pp. 10142-10148 (2020).

Media Coverage: KAIST News (in Korean)KAIST ​News, and International Media   

 

Disruptive 1st-Principles TCAD

Based on MS-DFT and related computational methods, we are actively developing science and technology that will enable hitherto unachievable ​technology computer-aided design (TCAD) of next-generation semiconductor devices​. We recently demonstrated for the first time ab initio device simulations of graphene-based van der Waals 2D heterojunction transistors. A key focus of our present effort is extending the length and time scales of first-principles electronic structure and TCAD calculations by incorporating artificial intelligence (AI) and multi-scale computing techniques. A notable recent development is the DeepSCF model, which provides a foundational principle for AI-based acceleration of materials simulations across scales.  

 

Selected Publications

 ​"Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints"

Ryong-Gyu Lee and Yong-Hoon Kim

npj Computational Materials, Vol. 10, Art. 248 (2024)

Media Coverage: KAIST ​News (in Korean)KAIST ​Newsand International Media 


 ​"Gate-versus defect-induced voltage drop and negative differential resistance in vertical graphene heterostructures"

Tae Hyung Kim, Juho Lee, Ryong-Gyu Lee, and Yong-Hoon Kim

npj Computational Materials, Vol. 8, Art. 50 (2022)

Media Coverage: KAIST ​Breakthroughs (Spring 2023), KAIST News (in Korean), and KAIST Times (in Korean)