Atomic-Scale
Device Simulation Lab

Current Members

3

Hyeonwoo Yeo Ph.D Candidates

Research Interest

Electrochemical interfaces​, Li-ion battery

Paper & Patent

1st"Ab initio theory of the nonequilibrium adsorption energy", npj Computational Materials (2024)​

"Atomistics of asymmetric lateral growth of colloidal zincblende CdSe nanoplatelets", Chemistry of Materials (2021)

"Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with Diazonium", ACS Nano (2021)​

1st"First-principles-derived effective mass approximation for the improved description of quantum nanostructures", Journal of Physics: Materials (2020)​

"Quasi-Fermi level splitting in nanoscale junctions from ab initio", Proceedings of the National Academy of Science (2020)​

Awards

삼성 Global Technology Symposium (GTS) INSPIRE AWARD (2023)

한국물리학회 봄 학술대회 우수 구두발표상 (2020)

제6회 EDISON 경진대회 장려상 (2017)

8th International Conference on Recent Progress in Graphene Research (RPGR) 우수 포스터상 (2016)

제5회 EDISON 경진대회 장려상 (2016)

이메일
dndhdrnl@kaist.ac.kr
연락처
042-350-7523
연구실
KAIST School of Electrical Engineering Bld. (E3-2) 6210
2

Lee Ryong Gyu Ph.D Candidates

Research Interest

Optoelectronic devices

Paper & Patent

"Gate-versus defect-induced voltage drop and negative differential resistance in vertical graphene heterostructures", Npj Computational Materials (2022)

1st"Optogenetics-inspired flexible van-der-Waals optoelectronic synapse and its application to a convolutional neural network", Advanced Materials (2021)

Awards

한국물리학회 봄학술대회 우수 구두발표상 (2022​)

한국물리학회 가을학술대회 우수 구두발표상 (2021​)​

이메일
ronggyulee@kaist.ac.kr
연락처
042-350-7523
연구실
KAIST School of Electrical Engineering Bld. (E3-2) 6210
1

Seunghyun Yu Ph.D Candidates

Molecular dynamics, Machine learning, Physics-informed neural networks

이메일
littleyu@kaist.ac.kr
연락처
042-350-7523
연구실
KAIST School of Electrical Engineering Bld. (E3-2) 6210